The standard deviation is 15.76. The typical reading rate for the data set varies from the mean by an average of 15.76 words per minute.
The dataset is given as:
Reading Rate
(words per minute) Frequency
60 6
65 8
70 12
75 5
80 1
85 1
90 2
95 5
100 20
Calculate the mean using
Mean = Sum/Count
So, we have
Mean = (60 * 6 + 65 * 8 + 70 * 12 + 75 * 5 + 80 * 1 + 85 * 1 + 90 * 2 + 95 * 5 + 100 * 20)/(6 + 8 + 12 + 5 + 1 + 1 + 2 + 5 + 20)
Evaluate
Mean = 81.92
The standard deviation is
[tex]\sigma = \sqrt{\frac{\sum f(x - \bar x)^2}{\sum f -1}}[/tex]
So, we have:
SD = √[6 * (60 - 81.92)^2 + 8 * (65 - 81.92)^2 + 12 * (70 - 81.92)^2 + 5 * (75 - 81.92)^2 + 1 * (80 - 81.92)^2 + 1 * (85 - 81.92)^2 + 2 * (90 - 81.92)^2 + 5 * (95 - 81.92)^2 + 20 * (100 - 81.92)^2)]/[(6 + 8 + 12 + 5 + 1 + 1 + 2 + 5 + 20 - 1)]
This gives
SD = √248.382779661
Evaluate
SD = 15.76
Hence. the standard deviation is 15.76. The typical reading rate for the data set varies from the mean by an average of 15.76 words per minute.
Read more about standard deviation at:
https://brainly.com/question/4079902
#SPJ1