Respuesta :

Answer:

3rd option

Step-by-step explanation:

using the sine and cosine ratios for the 60° angle in the right triangle and the exact values.

cos60° = [tex]\frac{1}{2}[/tex] and sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{12}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2x = 12 ( divide both sides by 2 )

x = 6

and

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{y}{12}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2y = 12[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

y = 6[tex]\sqrt{3}[/tex]