Answer:
[tex]\textsf{Point-slope form}: \quad y-1=\dfrac{1}{5}(x-3)[/tex]
Step-by-step explanation:
Define the given points:
Substitute the defined points into the slope formula to find the slope of the line:
[tex]\implies \textsf{Slope $(m)$}=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-1-1}{-7-3}-\dfrac{-2}{-10}=\dfrac{1}{5}[/tex]
Substitute the found slope and one of the points into the point-slope formula:
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-1=\dfrac{1}{5}(x-3)[/tex]
Simplify to slope-intercept form, if necessary:
[tex]\implies y-1=\dfrac{1}{5}x-\dfrac{3}{5}[/tex]
[tex]\implies y=\dfrac{1}{5}x+\dfrac{2}{5}[/tex]