Answer the questions below about the quadratic function.g(×)=2×^2-12×+19Does the function have a minimum or maximum? minimum or maximum what is the functions minimum or maximum value?Where does the minimum or maximum value occur?x=?

Respuesta :

Given the function:

[tex]g(x)=2x^2-12x+19[/tex]

Let's determine if the function has a minimum or maximum.

The minimum and maximum of a function are the smallest and largest value of a function in a given range or domain

The given function has a minimum.

Apply the general equation of a quadratic function:

[tex]y=ax^2+bx+c[/tex]

To find the minimum value, apply the formula:

[tex]x=-\frac{b}{2a}[/tex]

Where:

b = -12

a = 2

Thus, we have:

[tex]\begin{gathered} x=-\frac{-12}{2(2)} \\ \\ x=-\frac{-12}{4} \\ \\ x=3 \end{gathered}[/tex]

To find the function's minimum value, find f(3).

Substitute 3 for x in the function and evaluate:

[tex]\begin{gathered} f(x)=2x^2-12x+19 \\ \\ f(3)=2(3)^2-12(3)+19 \\ \\ f(3)=2(9)-36+19 \\ \\ f(3)=18-36+19 \\ \\ f(3)=1 \end{gathered}[/tex]

Therefore, the function's minimum value is 1

Therefore, the functions minimum value occurs at:

x = 3

ANSWER:

• The function has a minimum

• Minimum value: 1

• The minimum occurs at: x = 3

Ver imagen YohanaT766525