Respuesta :

Answer:

Explanation:

For Blue Car:

Distance = 33 & 1/2 miles

Gasoline = 1 & 1/4 gallons

For Red Car:

Distance = 22 & 2/5 miles

Gasoline = 4/5 gallon

To determine the rate unit rate for miles per gallon for each car, we use the following formula:

[tex]Unit\text{ Rate = }\frac{\text{Distance}}{\text{Gasoline consumption}}[/tex]

First, we find the unit rate for blue car:

[tex]\begin{gathered} \text{Unit Rate=}\frac{33\text{ }\frac{1}{2}\text{ miles}}{1\text{ }\frac{1}{4}\text{ gallons}} \\ \end{gathered}[/tex]

Convert mixed numbers to improper fractions: 33 & 1/2 = 67/2 and 1 & 1/4 = 5/4

[tex]\begin{gathered} \text{Unit Rate = }\frac{\frac{67}{2}}{\frac{5}{4}} \\ \text{Simplify and rearrange:} \\ =\frac{67(4)}{2(5)} \\ \text{Calculate} \\ =\frac{134\text{ miles}}{5\text{ gallon}}\text{ } \\ or\text{ }26.8\text{ miles/gallon} \end{gathered}[/tex]

Next, we find the unit rate for red car:

[tex]\begin{gathered} \text{Unit Rate = }\frac{22\frac{2}{5}}{\frac{4}{5}} \\ \text{Simplify and rearrange} \\ =\frac{\frac{112}{5}}{\frac{4}{5}} \\ =\frac{112(5)}{5(4)} \\ \text{Calculate} \\ =28\text{ miles/gallon} \end{gathered}[/tex]

Therefore, the car that could travel the greater distance on 1 gallon of gasoline is the red car.