Given the two sets:
[tex]\begin{gathered} A=\mleft\lbrace a,c\mright\rbrace \\ B=\mleft\lbrace d,g,w\mright\rbrace \end{gathered}[/tex]we can write the product set of A and B in the following form:
[tex]AxB=\mleft\lbrace(a,d\mright),(a,g),(a,w),(c,d),(c,g),(c,w)\}[/tex]next, we have that the number of elements in A is 2 and the number of elements in B is 3, then, we have:
[tex]n(AxB)=2\cdot3=6[/tex]finally, the equation that involves the numerals of the previous parts is:
[tex]n(AxB)=n(A)\cdot n(B)[/tex]where n(A) and n(B) represents the number of elements in A and B respectively.