Respuesta :

The hole appears in the rational function when the numerator and the denominator have the same zeroes

Since the rational function is

[tex]h(x)=\frac{x+7}{x^2-49}[/tex]

Factorize the denominator

[tex]x^2-49=(x+7)(x-7)[/tex]

The rational function h(x) is

[tex]h(x)=\frac{x+7}{(x+7)(x-7)}[/tex]

Since (x + 7) is in both numerator and denominator

Then there is a hole at x + 7 = 0

Let us find the value of x

[tex]\begin{gathered} x+7=0 \\ x+7-7=0-7 \\ x=-7 \end{gathered}[/tex]

The whole is at x = -7

Then simplify the fraction to find the value of y at x = -7

[tex]h(x)=\frac{(x+7)}{(x+7)(x-7)}[/tex]

Cancel the bracket (x+7) up by the same bracket down

[tex]h(x)=\frac{1}{x-7}[/tex]

Substitute x by -7

[tex]\begin{gathered} h(-7)=\frac{1}{-7-7} \\ h(-7)=\frac{1}{-14} \\ y=-\frac{1}{14} \end{gathered}[/tex]

The hole is at (-7, -1/14)