Number of adult tickets sold = Number of child tickets sold =

Given:
Total ticket = 321
Total collection = $3535
Adult ticket price = $15
Child ticket price = $5
Find-:
(1)
Number of adult tickets sold
(2)
Number of child tickets sold
Explanation-:
Let the number of adult tickets = x
Let the number of child tickets = y
If the total ticket is 321 then,
[tex]x+y=321........................(1)[/tex]Price for adult ticket is:
[tex]=15x[/tex]The price for child ticket is:
[tex]=5y[/tex]total price is $3535 then,
[tex]15x+5y=3535...................(2)[/tex]From eq(1)
[tex]\begin{gathered} x+y=321 \\ \\ 5x+5y=1605..............(3) \end{gathered}[/tex]So eq(2) - eq(3) is:
[tex]\begin{gathered} (15x+5y)-(5x+5y)=3535-1605 \\ \\ 15x-5x+5y-5y=1930 \\ \\ 15x-5x=1930 \\ \\ 10x=1930 \\ \\ x=\frac{1930}{10} \\ \\ x=193 \end{gathered}[/tex]Put the value in eq(1) then,
[tex]\begin{gathered} x+y=321 \\ \\ 193+y=321 \\ \\ y=321-193 \\ \\ y=128 \end{gathered}[/tex]So,
Number of adult tickets = 193
Number of child tickets = 128