Suppose that y varies inversely with x, and y = 5/4 when x = 16.(a) Write an inverse variation equation that relates x and y.Equation: (b) Find y when x = 4.y =

Respuesta :

In general, an inverse variation relation has the form shown below

[tex]\begin{gathered} y=\frac{k}{x} \\ k\to\text{ constant} \end{gathered}[/tex]

It is given that x=16, then y=5/4; thus,

[tex]\begin{gathered} \frac{5}{4}=\frac{k}{16} \\ \Rightarrow k=\frac{5}{4}\cdot16 \\ \Rightarrow k=20 \end{gathered}[/tex]

Therefore, the equation is y=20/x

[tex]\Rightarrow y=\frac{20}{x}[/tex]

2) Set x=4 in the equation above; then

[tex]\begin{gathered} x=4 \\ \Rightarrow y=\frac{20}{4}=5 \\ \Rightarrow y=5 \end{gathered}[/tex]

When x=4, y=5.