QuestionGiven that cot(0)- 1 and 0 is in Quadrant II, what is sin(0)? Write your answer in exact form. Do not round.Provide your answer below:sin (O)=

Given:
The trigonometric ratio is given as,
[tex]\cot \theta=-\frac{1}{2}[/tex]The value of θ lies in the second quadrant.
The objective is to find the value of sinθ.
Explanation:
The formula of cotθ is,
[tex]\cot \theta=\frac{\text{adjacent}}{\text{opposite}}=-\frac{1}{2}[/tex]Since, the value of θ lies in second quadrant, the triangle formed for cotθ will be,
Then, the value of x can be calculated as,
[tex]\begin{gathered} x^2=2^2+(-1)^2 \\ x=\sqrt[]{4+1} \\ x=\sqrt[]{5} \end{gathered}[/tex]To find the value of sinθ:
The value of sinθ can be calculated as,
[tex]\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin \theta=\frac{2}{\sqrt[]{5}} \\ \sin \theta=\frac{2}{\sqrt[]{5}}\times\frac{\sqrt[]{5}}{\sqrt[]{5}} \\ \sin \theta=\frac{2\sqrt[]{5}}{5} \end{gathered}[/tex]Hence, the value of sinθ is (2√5)/5.