Respuesta :

Notice that:

[tex]F(3)=3^3-3^2-4\cdot3-6=27-9-12-6=27-27=0.[/tex]

Therefore 3 is a root of the given polynomial.

Now, we can use this root to factor the polynomial:

[tex]F(x)=(x-3)\frac{x^3-x^2-4x-6}{x-3}.[/tex]

Using the synthetic division algorithm we get that:

[tex]\frac{x^3-x^2-4x-6}{x-3}=x^2+2x+2.[/tex]

The roots of the above polynomial are:

[tex]\begin{gathered} x=-1+i, \\ x=-1-i\text{.} \end{gathered}[/tex]

Therefore:

[tex]F(x)=\mleft(x-3\mright)(x+1+i)(x+1-i)\text{.}[/tex]

Answer:

[tex]F(x)=(x-3)(x+1+i)(x+1-i)\text{.}[/tex]