Base on table above is the scenario a proportional relationship

No
Explanations:A relationship is called a proportional relationship if it has two variables that are realated by the same ration. In this case there will be a proportionality constant.
In this table:
Let Height be represented as H
Let Time be represented as T
For the relationship to be a proportional relationship, it must obey the relation:
[tex]\begin{gathered} H\propto\text{ T} \\ H\text{ = kT} \\ \text{Where k is the proportionality constant} \end{gathered}[/tex]When T = 3, H = 15
Using H = kT
15 = 3k
k = 15 / 3
k = 5
When T = 6, H = 30
H = kT
30 = 6k
k = 30 / 6
k = 5
When T = 12, H = 45
H = kT
45 = 12k
k = 45 / 12
k = 3.75
Since the constant of proportionality is the the same for the three cases in the table, the scenario is not a proportional relationship