Which expression is equivalent to cot2B(1 – cos-B) for all values of ß for which cot2B(1 - cos2B) is defined?

From the Pythagorean identity,
[tex]\sin ^2\beta+\cos ^2\beta=1[/tex]we have
[tex]\sin ^2\beta=1-\cos ^2\beta[/tex]Then, the given expression can be rewritten as
[tex]\cot ^2\beta\sin ^2\beta\ldots(a)[/tex]On the other hand, we know that
[tex]\begin{gathered} \cot \beta=\frac{\cos\beta}{\sin\beta} \\ \text{then} \\ \cot ^2\beta=\frac{\cos^2\beta}{\sin^2\beta} \end{gathered}[/tex]Then, by substituting this result into equation (a), we get
[tex]\begin{gathered} \frac{\cos^2\beta}{\sin^2\beta}\sin ^2\beta \\ \frac{\cos ^2\beta\times\sin ^2\beta}{\sin ^2\beta} \end{gathered}[/tex]so by canceling out the squared sine, we get
[tex]\cos ^2\beta[/tex]Therefore, the answer is the last option