Respuesta :

Step 1

State the compound interest formula

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Where;

[tex]\begin{gathered} A=\text{ amount} \\ P=Prin\text{cipal}=\text{\$3000} \\ r=\text{ rate= }\frac{\text{6}}{100}=0.06 \\ n=\text{ number of periods of compounding= 4} \\ t=\text{ time = 6 years} \end{gathered}[/tex]

Step 2

Find the amount as required

[tex]\begin{gathered} A=3000(1+\frac{0.06}{4})^{6\times4} \\ A=3000(1+0.015)^{24} \\ A=3000(1.015)^{24} \\ A=\text{\$}4288.508436 \\ A\approx\text{ \$}4288.51 \end{gathered}[/tex]

Hence the amount compounded quarterly for 6 years based on a principal of $3000 and a 6% annual interest rate = $4288.51