Given
[tex]y=2500(1.50)^t[/tex]
Find
Interpret the values of a and b , also annual percent increase
Explanation
As the general form of growth exponential function is in the form of
[tex]\begin{gathered} y=ab^t \\ \end{gathered}[/tex]
where a is the inital value
t is the time
b= 1+r = where r is the rate of growth
so , in given situation
a represents the number of referrals it received at the start of the model; and b represents the growth factor of the number of referrals
option 4 is the correct one.
now we have to find the annual percent increase
for this we have to find the final referrels after 1 years.
for this put t = 2in given equation
[tex]\begin{gathered} y=2500(1.50)^2 \\ y=5625 \end{gathered}[/tex]
annual percent increase =
[tex]\begin{gathered} \frac{5625-2500}{2500}\times100 \\ \\ \frac{3125}{2500}\times100 \\ \\ 125\% \end{gathered}[/tex]
Final Answer
Therefore , the correct option is d .
the annual percent increase is 125%