Respuesta :

Given:

[tex]5x^2+2x=2[/tex]

To solve for x using the quadratic formula, we simplify the given equation first:

[tex]\begin{gathered} 5x^2+2x=2 \\ 5x^2+2x-2=0 \end{gathered}[/tex]

Next, we use the quadratic formula of the form ax^2+bx+c=0:

[tex]x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

where:

a=5

b=2

c=-2

We plug in what we know:

[tex]\begin{gathered} x_{1,2}=\frac{-2\pm\sqrt[]{2^2^{}-4(5)(-2)}}{2(5)} \\ \text{Simplify} \\ x_{1,2}=\frac{-2\pm\sqrt[]{44}}{10} \\ x_{1,2}=\frac{-2\pm2\sqrt[]{11}}{10} \end{gathered}[/tex]

We separate the solutions:

[tex]x_1=\frac{-2+2\sqrt[]{11}}{10}=\frac{-1+\sqrt[]{11}}{5}=0.46[/tex][tex]x_2=\frac{-2-2\sqrt[]{11}}{10}=-\frac{1+\sqrt[]{11}}{5}=-0.86[/tex]

Therefore,

[tex]x=0.46,-0.86[/tex]