Solve for t. If there are multiple solutions, enter them as a

we have the equation
[tex]\frac{12}{t}+\frac{18}{(t-2)}=\frac{9}{2}[/tex]Solve for t
step 1
Multiply both sides by 2t(t-2) to remove fractions
[tex]\frac{12\cdot2t(t-2)}{t}+\frac{18\cdot2t(t-2)}{(t-2)}=\frac{9\cdot2t(t-2)}{2}[/tex]simplify
[tex]12\cdot2(t-2)+18\cdot2t=9\cdot t(t-2)[/tex][tex]24t-48+36t=9t^2-18t[/tex][tex]\begin{gathered} 60t-48=9t^2-18t \\ 9t^2-18t-60t+48=0 \\ 9t^2-78t+48=0 \end{gathered}[/tex]Solve the quadratic equation
Using the formula
a=9
b=-78
c=48
substitute
[tex]t=\frac{-(-78)\pm\sqrt[]{-78^2-4(9)(48)}}{2(9)}[/tex][tex]t=\frac{78\pm66}{18}[/tex]The solutions for t are
t=8 and t=2/3
therefore
the answer is
t=2/3,8