Respuesta :

Given:

[tex]h(x)=(x-1)^3(x+3)^2[/tex]

The x-intercepts of the given polynomial are

[tex]x-\text{intercepts }=1\text{ (multiplicity 3) and -3 (multiplicity 2)}[/tex]

Substitute x=0 in h(x) to find y-intercepts.

[tex]\text{ y-intercepts =}(-1)^3(3)^2=-9[/tex][tex]\lim _{x\to-\infty}h(x)=\lim _{x\to-\infty}(x-1)^3(x+3)^2=-\infty[/tex]

[tex]as\text{ x}\rightarrow-\infty,\text{ h(x)}\rightarrow-\infty[/tex]

[tex]\lim _{x\to\infty}h(x)=\lim _{x\to\infty}(x-1)^3(x+3)^2=\infty[/tex]

[tex]as\text{ x}\rightarrow\infty,\text{ h(x)}\rightarrow\infty[/tex]

The graph of the given polynomial h(x) is

The degree of the polynomial is 6=even and the leading coefficient=1=positive.

Both ends of the graph point up.

End behaviour is

up/up.

Ver imagen ReddingQ626980