Respuesta :

we have the expression

[tex]3a^2-3a-36[/tex]

step 1

Factor 3

[tex]3(a^2-a-12)[/tex]

step 2

equate to zero

[tex]3(a^2-a-12)=0[/tex]

step 3

Solve

[tex](a^2-a-12)=0[/tex][tex]\begin{gathered} a^2-a=12 \\ (a^2-a+\frac{1}{4}-\frac{1}{4})=12 \\ (a^2-a+\frac{1}{4})=12+\frac{1}{4} \\ (a^2-a+\frac{1}{4})=\frac{49}{4} \end{gathered}[/tex]

Rewrite as perfect squares

[tex](a-\frac{1}{2})^2=\frac{49}{4}[/tex]

take the square root on both sides

[tex]\begin{gathered} a-\frac{1}{2}=\pm\frac{7}{2} \\ a=\frac{1}{2}\pm\frac{7}{2} \end{gathered}[/tex]

the values of a are

a=4 and a=-3

therefore

[tex]3(a^2-a-12)=3(a-4)(a+3)[/tex]