Number 6. For questions 5-7, (a) use synthetic division to show that x is a zero.(b) find the remaining factors of f(x).(c) use your results to find the complete factorization of f(x).(d) list all zeros of f(x).(e) graph the function.

SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given polynomials
[tex]f(x)=x^3+6x^2-15x-100[/tex]One of the zeroes is:
[tex]\begin{gathered} x=-5 \\ \text{this implies that:} \\ (x+5)=0 \end{gathered}[/tex]STEP 2: Use synthetic division to divide the polynomials
[tex]\frac{x^3+6x^2-15x-100}{x+5}[/tex]Write the coefficients of the numerator
[tex]1\:\:6\:\:-15\:\:-100[/tex][tex]\begin{gathered} \mathrm{Write\:the\:problem\:in\:synthetic\:division\:format} \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \\ Carry\:down\:the\:leading\:coefficient,\:unchanged,\:to\:below\:the\:division\: \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \\ \end{gathered}[/tex][tex]\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column \\ 1\left(-5\right)=-5 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ 6-5=1 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:\:\:\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column: \\ 1\left(-5\right)=-5 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ -15-5=-20 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:\:\:\:}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:\:}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} Multiply\:the\:carry-down\:value\:by\:the\:zero\:of\:the\:denominator,\:and\:carry\:the\:result\:up\:into\:the\:next\:column: \\ \left(-20\right)\left(-5\right)=100 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:100}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:\:}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} \mathrm{Add\:down\:the\:column:} \\ -100+100=0 \\ \begin{matrix}\texttt{\:\:\:\:-5¦\:\:\:\:\:1\:\:\:\:\:6\:\:\:-15\:\:-100}\\ \texttt{\:\:\:\:\:\:¦\underline{\:\:\:\:\:\:\:\:\:\:-5\:\:\:\:-5\:\:\:100}}\\ \texttt{\:\:\:\:\:\:\:\:\:\:\:\:1\:\:\:\:\:1\:\:\:-20\:\:\:\:\:0}\end{matrix} \end{gathered}[/tex][tex]\begin{gathered} \mathrm{The\:last\:carry-down\:value\:is\:the\:remainder} \\ 0 \end{gathered}[/tex]The last carry-down value is the remainder and it is 0 (zero)
Since the remainder is a zero, hence, x=-5 is a zero
Step 3: Answer question b
To get the factors, the remainder of the division in step 2 is given as:
The remaining factors of f(x) is:
[tex]x^2+x-20[/tex]STEP 4: Answer Question c
[tex]\begin{gathered} roots=(x+5)(x^2+x-20) \\ Factorize\text{ the other root to have:} \\ Using\text{ factorization methods:} \\ (x^2+x-20)=(x^2+5x-4x-20) \\ x(x+5)-4(x+5)=0 \\ (x-4)(x+5)=0 \end{gathered}[/tex]The complete factorization will give:
[tex](x+5)(x-4)(x+5)[/tex]STEP 5: Answer question d
The zeroes of f(x) will be:
[tex]\begin{gathered} zeroes\text{ of f\lparen x\rparen=?, we equate the roots to 0} \\ zeroes\Rightarrow x=-5,4,-5 \end{gathered}[/tex]zeroes are: -5,4,-5
STEP 6: Plot the graph