The Solution:
Given that equal number of each brand of golf ball was ordered.
Let the number of each brand ordered be represented with n
Each swinger ball cost $2.10
So, the total cost of the swinger ball ordered is:
[tex]2.10n[/tex]
Each Supra ball cost $1.00
So, the total cost of the supra ball ordered is:
[tex]\begin{gathered} 1.00\times n \\ \text{which becomes}\colon \\ n \end{gathered}[/tex]
Given that the total cost of the Swinger balls exceeded the total cost of the Supra balls by $330.00. We have the linear equation below:
[tex]2.1n=n+330[/tex]
We are required to find the number of dozens of each brand of golf balls that were ordered.
So, we shall solve for n and then divide the value by 12.
[tex]\begin{gathered} 2.1n=n+330 \\ \text{collecting the like terms, we get} \\ 2.1n-n=330 \\ 1.1n=330 \end{gathered}[/tex]
Dividing both sides by 1.1, we get
[tex]\begin{gathered} \frac{1.1n}{1.1}=\frac{330}{1.1} \\ \\ n=300\text{ balls} \end{gathered}[/tex]
Dividing 300 by 12 (since 1 dozen = 12 balls), we get
[tex]\frac{300}{12}=25\text{ dozens of each brand of golf balls were ordered.}[/tex]
Therefore, the correct answer is 25 dozens.