We have that the volume of sphere is
[tex]\begin{gathered} V_s=\frac{4}{3}\pi\cdot r^3 \\ \end{gathered}[/tex]
and the volume of a cube is
[tex]V_c=s^3[/tex]
so if s=r=3. The volume of the sphere is greater.
If they have the same volume, we get that
[tex]\begin{gathered} \frac{4}{3}\pi\cdot r^3=125\rightarrow \\ r^3=\frac{3}{4\cdot\pi}\cdot125\approx29.84\approx30 \\ r=\sqrt[3]{30}\approx3.10 \end{gathered}[/tex]
when s=r=2 we have that
[tex]\begin{gathered} V_s=\frac{4}{3}\pi\cdot8=\frac{32}{3}\pi \\ V_c=8 \end{gathered}[/tex]
so the volume of the sphere is greater