Respuesta :

Given the equations

x + y = 5----------------------(1)

x - 3y = 3-----------------------(2)

Subtract equation (2) from (1)

x - x -3y - y = 3 - 5

-4y = -2

Divide both -4

[tex]\begin{gathered} \frac{-4y}{-4}\text{ = }\frac{-2}{-4} \\ y\text{ = }\frac{1}{2}\text{ = 0.5} \\ \end{gathered}[/tex]

Substitute y = 1/2 into equation (1)

x + y = 5

[tex]\begin{gathered} x\text{ + }\frac{1}{2}\text{ =5} \\ x\text{ = 5 -}\frac{1}{2} \\ x\text{ = }\frac{10-1}{2} \\ x=\frac{9}{2}\text{ = 4.5} \\ \end{gathered}[/tex]

Hence, the solution to the equations is

[tex]\begin{gathered} x\text{ = }4.5,\text{ y = 0.5} \\ Or\text{ in coordinate form, (4.5, 0.5)} \end{gathered}[/tex]