Respuesta :

Answer:

y-5=⅛(x-2)

Explanation:

Given the points (2,5) and (-6,4).

To find the equation of the line joining these points in point-slope form, we begin by finding its slope.

[tex]\begin{gathered} \text{Slope,m}=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}} \\ =\frac{5-4}{2-(-6)} \\ =\frac{1}{2+6} \\ m=\frac{1}{8} \end{gathered}[/tex]

Next, we substitute the slope and any of the given points into the point-slope form below:

[tex]y-y_1=m(x-x_1)[/tex]

We use the point (2,5).

• x1=2, y1=5

[tex]y-5=\frac{1}{8}(x-2)[/tex]

The equation in point-slope form is y-5=⅛(x-2).