Respuesta :

Answer:

The unknown length of the side labeled n is 10.5 units

Explanation:

Given:

Two similar triangles with one unknown

To find:

the unknown length of the side labelled n

For two triangles to be similar, the ratio of their corresponding sides will equal

[tex]\begin{gathered} side\text{ with 36 corresponds to side with 27} \\ side\text{ with 14 corresponds to side with n} \\ The\text{ ratio:} \\ \frac{14}{n}\text{ = }\frac{36}{27} \end{gathered}[/tex]

[tex]\begin{gathered} crossmultiply: \\ 14(27)\text{ = 36\lparen n\rparen} \\ 36n\text{ = 378} \\ \\ divide\text{ both sides by n:} \\ \frac{36n}{36}\text{ = }\frac{378}{36} \\ n\text{ = 10.5} \end{gathered}[/tex]

The unknown length of the side labeled n is 10.5 units