Triangle ABC has vertices at A(−4, 3), B(0, 5), and C(−2, 0). Determine the coordinates of the vertices for the image if the preimage is translated 4 units down. A′(−4, −1), B′(0, 1), C′(−2, −4) A′(−4, 7), B′(0, 9), C′(−2, 4) A′(0, 3), B′(4, 4), C′(3, 0) A′(−8, 7), B′(−4, 9), C′(−6, 4)

Respuesta :

Given:

The triangle is ABC

Vertices of ABC is

[tex]\begin{gathered} A=(-4,3) \\ \\ B=(0,5) \\ \\ C=(-2,0) \end{gathered}[/tex]

Find-:

The vertex after 4 units down

Explanation-:

The triangle is down, which means changing the coordinates of the y-axis

The y axis reduce by 4 units, then coordinates is

[tex]\begin{gathered} A=(-4,3) \\ \\ A\rightarrow A^{\prime} \\ \\ A^{\prime}=(-4,(3-4)) \\ \\ A^{\prime}=(-4,-1) \end{gathered}[/tex]

The B' is

[tex]\begin{gathered} B=(0,5) \\ \\ B^{\prime}=(0,(5-4)) \\ \\ B^{\prime}=(0,1) \end{gathered}[/tex]

The C' is

[tex]\begin{gathered} C^{\prime}=(-2,(0-4)) \\ \\ C^{\prime}=(-2,-4) \end{gathered}[/tex]

So, the new coordinates are

[tex]\begin{gathered} A^{\prime}(-4,-1) \\ \\ B^{\prime}(0,1) \\ \\ C^{\prime}(-2,-4) \end{gathered}[/tex]