Respuesta :

Given:

The points are (-9,8) and (-4,-4).

Required:

We need to find the line equation in point-slope form.

Explanation:

Consider the slope equation.

[tex]slope,\text{ m=}\frac{y_2-y_1}{x_2-x_1}[/tex][tex]Substitute\text{ }y_2=-4,y_1=8,x_2=-4,\text{ and }x_1=-9\text{ in the formula to find the slope of the equation.}[/tex][tex]Slope,\text{ m=}\frac{-4-8}{-4-(-9)}[/tex]

[tex]Slope,\text{ m=}\frac{-12}{-4+9}[/tex]

[tex]Slope,\text{ m=}\frac{-12}{5}[/tex]

Consider the point (-9,8).

Consider the point-slope form of the equation.

[tex](y-y_1)=m(x-x_1)[/tex][tex]Substitute\text{ }m=-\frac{12}{5},y_1=8,\text{ and }x_1=-9\text{ in the equation.}[/tex]

[tex](y-8)=-\frac{12}{5}(x-(-(-9))[/tex]

[tex](y-8)=-\frac{12}{5}(x+9)[/tex]

Final answer:

[tex](y-8)=-\frac{12}{5}(x+9)[/tex]