Respuesta :

Given that Tom's yard is in the shape of a trapezoid, you know that the formula for calculating the area of a trapezoid is:

[tex]A=\frac{(b_1+b_2)}{2}\cdot h[/tex]

Where "h" is the height of the trapezoid and these are the bases:

[tex]\begin{gathered} b_1 \\ b_2 \end{gathered}[/tex]

In this case, you can identify that:

[tex]\begin{gathered} b_1=65\text{ }ft \\ b_2=50\text{ }ft \\ h=30\text{ }ft \end{gathered}[/tex]

Then, you can substitute values into the formula and evaluate:

[tex]A=\frac{(65\text{ }ft+50\text{ }ft)}{2}\cdot30\text{ }ft[/tex][tex]A=\frac{115\text{ }ft}{2}\cdot30\text{ }ft[/tex][tex]A=\frac{3450\text{ }ft^2}{2}[/tex][tex]A=\frac{3450\text{ }ft^2}{2}[/tex][tex]A=1725\text{ }ft^2[/tex]

Hence, the answer is:

[tex]1725\text{ }ft^2[/tex]