To answer this question, we need to remember that the area of a rectangle is given by:
[tex]A_{\text{rectangle}}=l\cdot w[/tex]And we have - from the question - that:
[tex]A_{\text{rectangle}}=x^2-8x+16[/tex]And the width of the rectangle is:
[tex]w=x-4[/tex]If we factor the polynomial that represents the area, we need to find two numbers:
• a * b = 16
,• a + b = -8
And both numbers are:
• a = -4
,• b = -4
Since
• -4 * -4 = 16
,• -4 - 4 = -8
Therefore, we can say that:
[tex]x^2-8x+16=(x-4)(x-4)=(x-4)^2[/tex]Therefore:
[tex]l\cdot w=A_{\text{rectangle}}[/tex][tex]l=\frac{A_{rec\tan gle}}{w}[/tex]Then the length of the rectangle is:
[tex]l=\frac{x^2-8x+16}{x-4}=\frac{(x-4)(x-4)}{x-4}\Rightarrow\frac{x-4}{x-4}=1[/tex][tex]l=\frac{(x-4)}{(x-4)}\cdot(x-4)\Rightarrow l=x-4[/tex]In summary, therefore, the length of the rectangle is x - 4.
[tex]l=x-4[/tex][We can check this result if we multiply both values as follows:
[tex]A_{\text{rectangle}}=l\cdot w=(x-4)\cdot(x-4)=(x-4)^2_{}[/tex]And we already know that the area of the rectangle is:
[tex]x^2-8x+16=(x-4)^2[/tex].]