N8) solve the system using substitution method and then graph the equations.2x - 4y = -23x + 2y = 3-

Solution
Given:
2x - 4y = -2
3x + 2y = 3
Substitution method
[tex]\begin{gathered} From\text{ 3x+2y=3} \\ 3x=3-2y \\ x=\frac{3-2y}{3} \end{gathered}[/tex][tex]\begin{gathered} Substitute\text{ }x=\frac{3-2y}{3}\text{ into the first equation} \\ 2x-4y=-2 \\ 2(\frac{3-2y}{3})-4y=-2 \\ \frac{6-4y}{3}-4y=-2 \\ Multiply\text{ }trough\text{ by 3} \\ 6-4y-12y=-6 \\ 6-16y=-6 \\ -16y=-6-6 \\ -16y=-12 \\ y=\frac{-12}{-16} \\ y=\frac{3}{4} \end{gathered}[/tex][tex]\begin{gathered} Substitute\text{ y=}\frac{3}{4}\text{ into }x=\frac{3-2y}{3} \\ x=\frac{3-2(\frac{3}{4})}{3}=\frac{3-\frac{3}{2}}{3}=\frac{\frac{6-3}{2}}{3}=\frac{\frac{3}{2}}{3} \\ x=\frac{3}{6} \\ x=\frac{1}{2} \end{gathered}[/tex][tex]Thus,\text{ x=}\frac{1}{2},y=\frac{3}{4}[/tex]Graphical method:
Plot the graph of the two equations on the same graph
The point of intersection of the two graphs gives the solution to the system of equations
The point of intersection is (0.5, 0.75)
Which in fraction gives (1/2, 3/4)
Thus. x = 1/2, y= 3/4