Respuesta :

Operation on rational expressions

Step 1: division of fractions

The division of two fractions is the same as multiplying the first by the inverted second fraction:

Then, in this case:

[tex]\frac{24y^2}{5x^2}\div\frac{6y^3}{25x^2}=\frac{24y^2}{5x^2}\times\frac{25x^2}{6y^3}[/tex]

Step 2: multiplication of two fractions

We multiply two fractions by multiplying the numerators and the denominators:

[tex]\frac{24y^2}{5x^2}\times\frac{25x^2}{6y^3}=\frac{24y^2\times25x^2}{5x^2\times6y^3}[/tex]

Step 3: simplifying the numbers of the fraction

We know that

[tex]\frac{25}{5}=5\text{ and }\frac{24}{6}=4[/tex]

Then, we can use this in our fraction:

[tex]\begin{gathered} \frac{24y^2\times25x^2}{5x^2\times6y^3}=5\cdot4\frac{y^2x^2}{x^2y^3} \\ \downarrow\text{ since 5}\cdot4=20 \\ 5\cdot4\frac{y^2x^2}{x^2y^3}=20\frac{y^2x^2}{x^2y^3} \end{gathered}[/tex]

Step 4: exponents of the result

We know that if we have a division of same base expressions (same letters), the exponent is just a substraction:

[tex]\begin{gathered} \frac{y^2}{y^3}=y^{2-3}=y^{-1} \\ \frac{x^2}{x^2}=x^{2-2}=x^0=1 \end{gathered}[/tex]

Then,

[tex]20\frac{y^2x^2}{x^2y^3}=20y^{-1}\cdot1=20y^{-1}[/tex]

Since negative exponents correspond to a division, then we can express the answer in two different ways:

[tex]20y^{-1}=\frac{20}{y}[/tex]

Answer:

[tex]20y^{-1}=\frac{20}{y}[/tex]

Ver imagen AmmaraV56701