Perform the indicated operation of multiplication or division on the rational expression and simplify

The division of two fractions is the same as multiplying the first by the inverted second fraction:
Then, in this case:
[tex]\frac{24y^2}{5x^2}\div\frac{6y^3}{25x^2}=\frac{24y^2}{5x^2}\times\frac{25x^2}{6y^3}[/tex]We multiply two fractions by multiplying the numerators and the denominators:
[tex]\frac{24y^2}{5x^2}\times\frac{25x^2}{6y^3}=\frac{24y^2\times25x^2}{5x^2\times6y^3}[/tex]We know that
[tex]\frac{25}{5}=5\text{ and }\frac{24}{6}=4[/tex]Then, we can use this in our fraction:
[tex]\begin{gathered} \frac{24y^2\times25x^2}{5x^2\times6y^3}=5\cdot4\frac{y^2x^2}{x^2y^3} \\ \downarrow\text{ since 5}\cdot4=20 \\ 5\cdot4\frac{y^2x^2}{x^2y^3}=20\frac{y^2x^2}{x^2y^3} \end{gathered}[/tex]We know that if we have a division of same base expressions (same letters), the exponent is just a substraction:
[tex]\begin{gathered} \frac{y^2}{y^3}=y^{2-3}=y^{-1} \\ \frac{x^2}{x^2}=x^{2-2}=x^0=1 \end{gathered}[/tex]Then,
[tex]20\frac{y^2x^2}{x^2y^3}=20y^{-1}\cdot1=20y^{-1}[/tex]Since negative exponents correspond to a division, then we can express the answer in two different ways:
[tex]20y^{-1}=\frac{20}{y}[/tex]