Respuesta :

The given functions are,

[tex]\begin{gathered} f(x)=x^2+3x-11_{} \\ g(x)=3x+6 \end{gathered}[/tex]

Fog can be determined as,

[tex]\begin{gathered} \text{fog}=f(g(x)) \\ =f(3x+6) \\ =(3x+6)^2+3(3x+6)-11 \\ =9x^2+36+36x+9x+18-11 \\ =9x^2+45x+43 \end{gathered}[/tex]

The value of fog(-1) can be determined as,

[tex]\begin{gathered} \text{fog}(-1)=9(-1)^2+45(-1)+43 \\ =9-45+43 \\ =7 \end{gathered}[/tex]

Thus, the requried value is 7.