Which value of x proves that the two triangles above are similar? 42.7 ft 26.7 ft 10 ft 25.6 ft

Explanation
Step 1
we have two triangles
ACE and BCD
if the triangles are similar, then the ratio of the sides must be the same:
[tex]\begin{gathered} \frac{\text{red line}}{purple\text{ line}}=\frac{blue\text{ line}}{\text{green line}} \\ \text{replacing} \\ \frac{16+x}{32}=\frac{x}{20} \end{gathered}[/tex]Step 2
solve for x
[tex]\begin{gathered} \frac{16+x}{32}=\frac{x}{20} \\ \text{cross multiply} \\ 20(16+x)=32\cdot x \\ 320+20x=32x \\ \text{subtrac 20x in both sides} \\ 320+20x-20x=32x-20x \\ 320=12x \\ \text{divide both sides y 12} \\ \frac{320}{12}=\frac{12x}{12} \\ \text{ x=26.66} \end{gathered}[/tex]rounded
[tex]x=26.7\text{ }[/tex]I hope this helps you