Respuesta :

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data

A(2, 3), B(8, 7), C(6 1)

Step 02:

Line AB

Slope formula

m = (y2 - y1) / (x2 - x1)

A (2 , 3) x1 = 2 y1 = 3

B (8 , 7) x2 = 8 y2 = 7

[tex]m\text{ = }\frac{7-3}{8-2}=\frac{4}{6}=\frac{2}{3}[/tex]

Step 03:

Slope of the perpendicular line, m’

m' = -1 / m

[tex]m\text{'}=\text{ }\frac{-1}{m\text{ }}=\text{ }\frac{-1\text{ }}{\frac{2}{3}}\text{ = -}\frac{3}{2}[/tex]

Step 04:

Line CD

m' = (y2 - y1) / (x2 - x1)

C (6 , 1) x1 = 6 y1 = 1

D ( x2, y2) x2 = x2 y2 = y2

[tex]-\frac{3}{2}=\text{ }\frac{y2-1}{x2-6}[/tex][tex]\frac{3}{2}=\frac{1-y2}{6-x2}[/tex]

We must test the numerical values to verify equality,

x2 = 9

y2 = 3

[tex]\frac{3}{2}=\frac{1-9}{6-3}\text{ = }\frac{-8}{3}\text{ }[/tex]

x2 = 4

y2 = 4

[tex]undefined[/tex]