Respuesta :

Given:

• A = 100 degrees

,

• a = 3.5

,

• b = 3

Let's solve for the remaining angles and side of the triangle.

Here, we are given one angle and two sides.

To solve, apply the Law of Sines:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

• To solve for measure of angle B, we have:

[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin B}{b} \\ \\ \frac{\sin100}{3.5}=\frac{\sin B}{3} \\ \\ \sin B=\frac{3\sin 100}{3.5} \\ \\ \sin B=\frac{2.954}{3.5} \\ \\ \sin B=0.844 \end{gathered}[/tex]

Take the sine inverse of both sides:

[tex]\begin{gathered} B=\sin ^{-1}(0.844) \\ \\ B=57.58^0 \end{gathered}[/tex]

Therefore, the measue of angle B is = 57.58 degrees.

• To solve for angle C, apply the Triangle Angle Sum Theorem.

m∠A + m∠B + m∠C = 180

m∠C = 180 - m∠A - m∠B

m∠C = 180 - 100 - 57.68

m∠C = 22.32

The measure of angle C is 22.32 degrees.

• To find the length of c, apply the Law of Sines:

[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin C}{c} \\ \\ \frac{\sin100}{3.5}=\frac{\sin 22.32}{c} \\ \\ c=\frac{3.5\sin 22.32}{\sin 100}\tan ^{-1}\tan ^{-1} \\ \\ c=\frac{1.329}{0.9848} \\ \\ c=1.35 \end{gathered}[/tex]

The length of side c is 1.35 units.

ANSWER:

• B = 57.58,°

,

• C = 22.32,°

,

• c = 1.35