Respuesta :

SOLUTION:

Case: Area of plane shapes

Method:

a) Parallelogram

To find the area we need to find the perpendicular height (using Pythagoras theorem)

[tex]\begin{gathered} h^2+7^2=25^2 \\ h^2+49=625 \\ h^2=625-49 \\ h^2=576 \\ h=\sqrt{576} \\ h=24 \end{gathered}[/tex]

The Area of a parallelogram is given as:

[tex]\begin{gathered} A=bh \\ A=23\times24 \\ A=552\text{ }ft^2 \end{gathered}[/tex]

b) Triangle

To find the area of the triangle, we need to find the base first

First, lets find 'a'

[tex]\begin{gathered} a^2+60^2=70^2 \\ a^2+3600=4900 \\ a^2=4900-3600 \\ a^=\sqrt{1300} \\ a=36.06 \end{gathered}[/tex]

The base, b

b= 2(a)

b= 2 (36.06)

b= 72.12

The area of the triangle is:

[tex]\begin{gathered} A=\frac{1}{2}bh \\ A=\frac{1}{2}\times72.12\times60 \\ A=2163.6 \end{gathered}[/tex]

Final answer:

a) Parallelogram,

A= 552 square feet

b) Triangle

A= 2163.6 square feet

Ver imagen YacqubR757137
Ver imagen YacqubR757137