The wiring in a house must be thick enough so it does not become so hot as to start a fire.part aWhat diameter must a copper wire be if it is to carry a maximum current of 34 A and produce no more than 1.6 W of heat per meter of length?

Respuesta :

Given:

The maximum current in the circuit is,

[tex]i=34\text{ A}[/tex]

The power per length is,

[tex]\frac{P}{l}=1.6\text{ W/m}[/tex]

To find:

The diameter of the copper wire

Explanation:

The power (P) produced by current i, through a copper wire of resistance R and length l is given by,

[tex]\begin{gathered} Pl=i^2R \\ \frac{R}{l}=\frac{P}{i^2} \\ \frac{R}{l}=\frac{1.6}{34\times34} \end{gathered}[/tex]

Now,

[tex]\begin{gathered} R=\frac{\rho l}{A} \\ R=\frac{\rho l}{\pi r^2} \end{gathered}[/tex]

The resistivity of copper is,

[tex]\rho=1.72\times10^{-8}\text{ ohm.m}[/tex]

So, we can write,

[tex]\begin{gathered} \frac{R}{l}=\frac{\rho}{\pi r^2} \\ \frac{1.6}{34\times34}=\frac{1.72\times10^{-8}}{\pi r^2} \\ r^2=\frac{1.72\times10^{-8}\times34\times34}{1.6} \\ r=3.5\times10^{-3}\text{ m} \\ diamer\text{ is,} \\ 2r=7.0\times10^{-3}\text{ m} \end{gathered}[/tex]

Hence, the diameter is,

[tex]7.0\times10^{-3}\text{ m}[/tex]