Respuesta :

In this problem, we have an exponential growth function of the form

[tex]y=a(b)^x[/tex]

where

a=10 bacteria (initial value at 2 pm)

b is the base of the exponential function

[tex]y=10(b)^x[/tex]

Find out the value of b

we know that

For x=0 (2 pm), y=10 bacteria

At 5 pm

y=33,750 bacteria

x=(5 pm-2 pm)=3 hours

substitute in the exponential equation

[tex]33,750=10(b)^3[/tex]

Solve for b

[tex]b^3=\frac{33,750}{10}[/tex][tex]\begin{gathered} b=\sqrt[3]{\frac{33,750}{10}} \\ b=15 \end{gathered}[/tex]

the equation is

[tex]y=10(15)^x[/tex]

Part B

At 7 pm

x=(7 pm-2 pm)=5 hours

substitute

[tex]\begin{gathered} y=10(15)^5 \\ y=7,593,750\text{ bacteria} \end{gathered}[/tex]