Respuesta :

Answer:

The equivalent expression is;

[tex]\frac{1}{x^{19}}[/tex]

Explanation:

Given the expression;

[tex]\frac{(x^{-5})^4}{x^{-1}}[/tex]

we want to simplify;

[tex]\begin{gathered} \frac{(x^{-5})^4}{x^{-1}} \\ =\frac{x^{-5}^{(4)}}{x^{-1}} \\ =\frac{x^{-20}}{x^{-1}} \end{gathered}[/tex]

Applying the rules of exponent;

[tex]\begin{gathered} =\frac{x^{-20}}{x^{-1}} \\ =\frac{1}{x^{20}}\times\frac{1}{x^{-1}} \\ =\frac{1}{x^{20-1}} \\ =\frac{1}{x^{19}} \end{gathered}[/tex]

Therefore, the equivalent expression is;

[tex]\frac{1}{x^{19}}[/tex]