The area of a rectangle is given by the formula
[tex]A=L*W[/tex]where
A=28 m2
L=3W-5
substitute given values in the formula
[tex]\begin{gathered} 28=(3w-5)W \\ 28=3w^2-5w \\ 3w^2-5w-28=0 \end{gathered}[/tex]Solve the quadratic equation
Using the formula
we have
a=3
b=-5
c=-28
substitute
[tex]w=\frac{-(-5)\pm\sqrt{-5^2-4(3)(-28)}}{2(3)}[/tex][tex]w=\frac{5\pm19}{6}[/tex]The solutions for w are
w=4 and w=-2.33 ( is not a solution because is a negative number)
so
The width w=4 m
Find out the value of L
L=3w-5=3(4)-5=7 m
therefore