Respuesta :

The area of a rectangle is given by the formula

[tex]A=L*W[/tex]

where

A=28 m2

L=3W-5

substitute given values in the formula

[tex]\begin{gathered} 28=(3w-5)W \\ 28=3w^2-5w \\ 3w^2-5w-28=0 \end{gathered}[/tex]

Solve the quadratic equation

Using the formula

we have

a=3

b=-5

c=-28

substitute

[tex]w=\frac{-(-5)\pm\sqrt{-5^2-4(3)(-28)}}{2(3)}[/tex][tex]w=\frac{5\pm19}{6}[/tex]

The solutions for w are

w=4 and w=-2.33 ( is not a solution because is a negative number)

so

The width w=4 m

Find out the value of L

L=3w-5=3(4)-5=7 m

therefore

L=7 m

W=4 m