Respuesta :

[tex]b,c\text{ and d}[/tex]

Explanation

remember some properties of the exponents

[tex]\begin{gathered} a^m\cdot a^n=a^{m+n} \\ (a^m)^n=a^{m\cdot n} \\ a^{-m}=\frac{1}{a^m} \end{gathered}[/tex]

then, to solve this solve each option and compare

Step 1

[tex]6^{-5}\cdot6^2[/tex]

solve

[tex]\begin{gathered} 6^{-5}\cdot6^2=6^{-5+2}=6^{-3} \\ \end{gathered}[/tex]

so, this is not an answer

Step 2

[tex](\frac{1}{6^2})^5[/tex]

solve

[tex]\begin{gathered} (\frac{1}{6^2})^5=(6^{-2})^5=6^{(-2\cdot5)}=6^{-10} \\ \end{gathered}[/tex]

so, this is an answer

Step 3

[tex]\begin{gathered} (6^{-5})^2 \\ \text{solve} \\ (6^{-5})^2=6^{-5\cdot2}=6^{-10} \end{gathered}[/tex]

so, this is an answer

Step 4

[tex]\begin{gathered} \frac{6^{-3}}{6^7} \\ \text{solve} \\ \frac{6^{-3}}{6^7}=\frac{1}{6^3\cdot6^7}=\frac{1}{6^{3+7}}=\frac{1}{6^{10}}=6^{-10} \end{gathered}[/tex]

so, this is an answer

Step 5

[tex]\begin{gathered} \frac{6^5\cdot6^{-3}}{6^{-8}} \\ \text{solve} \\ \frac{6^5\cdot6^{-3}}{6^{-8}}=\frac{6^{5-3}}{6^{-8}}=\frac{6^2}{6^{-8}}=6^2\cdot\frac{1}{6^{-8}}=6^2\cdot6^8=6^{10} \end{gathered}[/tex]

so, this is not an answer

I hope this helps you