Reduce the rational expression to lowest terms. If it is already in lowest terms, enter the expression in the answerbox. Also, specify any restrictions on the variable.a²-3a-4/a² + 5a + 4Rational expression in lowest terms:Variable restrictions for the original expression: a

Reduce the rational expression to lowest terms If it is already in lowest terms enter the expression in the answerbox Also specify any restrictions on the varia class=

Respuesta :

Factorize both quadratic polynomials, as shown below

[tex]\begin{gathered} a^2-3a-4=0 \\ \Rightarrow a=\frac{3\pm\sqrt{9+16}}{2}=\frac{3\pm\sqrt{25}}{2}=\frac{3\pm5}{2}\Rightarrow a=-1,4 \\ \Rightarrow a^2-3a-4=(a+1)(a-4) \\ \end{gathered}[/tex]

Similarly,

[tex]\begin{gathered} a^2+5a+4=0 \\ \Rightarrow a=\frac{-5\pm\sqrt{25-16}}{2}=\frac{-5\pm3}{2}\Rightarrow a=-1,-4 \\ \Rightarrow a^2+5a+4=(a+1)(a+4) \end{gathered}[/tex]

Thus,

[tex]\Rightarrow\frac{a^2-3a-4}{a^2+5a+4}=\frac{(a+1)(a-4)}{(a+1)(a+4)}[/tex]

Therefore, since the denominator cannot be equal to zero.

The variable restrictions for the original expression are a≠-1,-4

Then, provided that a is different than -1,

[tex]\Rightarrow\frac{a^2-3a-4}{a^2+5a+4}=\frac{x-4}{x+4}[/tex]

The rational expression in the lowest terms is (x-4)/(x+4)