Respuesta :

The form of the exponential function is

[tex]f(x)=a(b)^x[/tex]

a is the initial value (value f(x) at x = 0)

b is the growth/decay factor

Since the function has points (0, 6) and (3, 48), then

Substitute x by 0 and f(x) by 6 to find the value of a

[tex]\begin{gathered} x=0,f(x)=6 \\ 6=a(b)^0 \\ (b)^0=1 \\ 6=a(1) \\ 6=a \end{gathered}[/tex]

Substitute the value of a in the equation above

[tex]f(x)=6(b)^x[/tex]

Now, we will use the 2nd point

Substitute x by 3 and f(x) by 48

[tex]\begin{gathered} x=3,f(x)=48 \\ 48=6(b)^3 \end{gathered}[/tex]

Divide both sides by 6

[tex]\begin{gathered} \frac{48}{6}=\frac{6(b)^3}{6} \\ 8=b^3 \end{gathered}[/tex]

Since 8 = 2 x 2 x 2, then

[tex]8=2^3[/tex]

Change 8 to 2^3

[tex]2^3=b^3[/tex]

Since the powers are equal then the bases must be equal

[tex]2=b[/tex]

Substitute the value of b in the function

[tex]f(x)=6(2)^x[/tex]

The answer is:

The formula of the exponential function is

[tex]f(x)=6(2)^x[/tex]