Respuesta :

Given:

The orbital height of the satellite, h=94 km=94000 m

The mass of the satellite, m=1045 kg

The new altitude of the satellite, d=207 km=207000 m

To find:

a) The energy needed.

b) The change in the kinetic energy.

c) The change in the potential energy.

Explanation:

The radius of the earth, R=6.37×10⁶ m

The mass of the earth, M=6×10²⁴ kg

a) The orbital velocity is given by,

[tex]v=\sqrt{\frac{GM}{r}}[/tex]

Where G is the gravitational constant and r is the radius of the satellite from the center of the earth.

Thus the initial orbital velocity of the earth,

[tex]\begin{gathered} v_1=\sqrt{\frac{6.67\times10^{-11}\times6\times10^{24}}{(6.37×10^6+94000)}} \\ =7868.43\text{ m/s} \end{gathered}[/tex]

The orbital velocity after changing the altitude is,

[tex]\begin{gathered} v_2=\sqrt{\frac{6.67\times10^{-11}\times6\times10^{24}}{(6.37\times10^6+207000)}} \\ =7800.5\text{ m/s} \end{gathered}[/tex]

Thus the total energy needed is given by,

[tex]E=(\frac{1}{2}mv_2^2-\frac{GMm}{(R+d)})-(\frac{1}{2}mv_1^2-\frac{GMm}{(R+h)})[/tex]

On substituting the known values,

[tex]\begin{gathered} E=1045[(\frac{1}{2}\times7868.43^2-\frac{6.67\times10^{-11}\times6\times10^{24}}{(6.37\times10^6+207000)})-(\frac{1}{2}\times7800.5^2-\frac{6.67\times10^{-11}\times6\times10^{24}}{(6.37×10^6+94000)})] \\ =623\text{ MJ} \end{gathered}[/tex]

b)

The change in the kinetic energy is given by,

[tex]\begin{gathered} KE=\frac{1}{2}mv_2^2-\frac{1}{2}mv_1^2 \\ =\frac{1}{2}m(v_2^2-v_1^2) \end{gathered}[/tex]

On substituting the known values,