To solve this problem, we need to use the Law of Cosines. The law states that given any triangle ABC:
Then;
[tex]c^2=a^2+b^2-2ab\cos(C)[/tex]
Since we want to find the measure of angle x, we can use:
c = 175 mi
a = 200 mi
b = 50 mi
C = x
Now, by the Law of Cosines:
[tex]175^2=200^2+50^2-2\cdot200\cdot50\cdot\cos(x)[/tex]
And solve:
[tex]30625=40000+2500-20000\cos(x)[/tex][tex]30625-40000-2500=-20000\cos(x)[/tex][tex]\frac{-11875}{-20000}=\cos(x)[/tex][tex]\begin{gathered} x=\cos^{-1}(0.59375) \\ . \\ x\approx53.5764 \end{gathered}[/tex]
To the nearest whole number, x = 54°