Number 14. Directions in pic. And also when you graph do the main function in red and the inverse in blue

Question 14.
Given the function:
[tex]f(x)=-\frac{2}{3}x-4[/tex]Let's find the inverse of the function.
To find the inverse, take the following steps.
Step 1.
Rewrite f(x) for y
[tex]y=-\frac{2}{3}x-4[/tex]Step 2.
Interchange the variables:
[tex]x=-\frac{2}{3}y-4[/tex]Step 3.
Solve for y
Add 4 to both sides:
[tex]\begin{gathered} x+4=-\frac{2}{3}y-4+4 \\ \\ x+4=-\frac{2}{3}y \end{gathered}[/tex]Multply all terms by 3:
[tex]\begin{gathered} 3x+3(4)=-\frac{2}{3}y\ast3 \\ \\ 3x+12=-2y \end{gathered}[/tex]Divide all terms by -2:
[tex]\begin{gathered} -\frac{3}{2}x+\frac{12}{-2}=\frac{-2y}{-2} \\ \\ -\frac{3}{2}x-6=y \\ \\ y=-\frac{3}{2}x-6 \end{gathered}[/tex]Therefore, the inverse of the function is:
[tex]f^{-1}(x)=-\frac{3}{2}x-6[/tex]Let's graph both functions.
To graph each function let's use two points for each.
• Main function:
Find two point usnig the function.
When x = 3:
[tex]\begin{gathered} f(3)=-\frac{2}{3}\ast3-4 \\ \\ f(3)=-2-4 \\ \\ f(3)=-6 \end{gathered}[/tex]When x = 0:
[tex]\begin{gathered} f(0)=-\frac{2}{3}\ast(0)-4 \\ \\ f(-3)=-4 \end{gathered}[/tex]For the main function, we have the points:
(3, -6) and (0, -4)
Inverse function:
When x = 2:
[tex]\begin{gathered} f^{-1}(2)=-\frac{3}{2}\ast(2)-6 \\ \\ f^{-1}(2)=-3-6 \\ \\ f^1(2)=-9 \end{gathered}[/tex]When x = -2:
[tex]\begin{gathered} f^{-1}(-2)=-\frac{3}{2}\ast(-2)-6 \\ \\ f^1(-2)=3-6 \\ \\ f^{-1}(2)=-3 \end{gathered}[/tex]For the inverse function, we have the points:
(2, -9) and (-2, -3)
To graph both functions, we have:
ANSWER:
[tex]\begin{gathered} \text{ Inverse function:} \\ f^{-1}(x)=-\frac{3}{2}x-6 \end{gathered}[/tex]