Answer:
Nonagon
Explanation:
Each of the interior angles of a polygon is calculated using the formula:
[tex]\frac{180^0\mleft(n-2\mright)}{n}[/tex]An Octagon has 8 sides, therefore:
[tex]\begin{gathered} Each\; \text{Interior Angle=}\frac{180^0(8-2)}{\square} \\ =\frac{180\times6}{8} \\ =\frac{1080^0}{8} \\ =135^0 \end{gathered}[/tex]A Nonagon has 9 sides, therefore:
[tex]\begin{gathered} Each\; I\text{nterior Angle=}\frac{180^0(9-2)}{9} \\ =\frac{180\times7}{9} \\ =\frac{1260^0}{9} \\ =140^0 \end{gathered}[/tex]Therefore, the nonagon has a greater interior angle.