Respuesta :

Vector diagram:

The resultant vector is given as,

[tex]R=\sqrt[]{A^2+B^2+2AB\cos \theta}[/tex]

Here, θ is the angle between vector A and B.

Substituting all known values,

[tex]\begin{gathered} R=\sqrt[]{(63.5)^2+(101)^2+2\times101\times63.5\times\cos (33^{\circ})} \\ =158.08\text{ m} \end{gathered}[/tex]

Therefore, the resultant magnitue of the sum of these two vectors are 158.08 m.

The x-component of the magnitude is given as,

[tex]\begin{gathered} R_x=101\cos (57^{\circ})+63.5\cos (90^{\circ}) \\ =55.0\text{ m} \end{gathered}[/tex]

The y- component of the magnitude is given as,

[tex]\begin{gathered} R_y=63.5\sin (90^{\circ})+101\sin (57^{\circ}) \\ =148.2\text{ m} \end{gathered}[/tex]

Therefore, the direction is given as,

[tex]\begin{gathered} \phi=\tan ^{-1}(\frac{R_y}{R_x}) \\ =\tan ^{-1}(\frac{148.2\text{ m}}{55.0\text{ m}}) \\ =69.63^{\circ} \end{gathered}[/tex]

Therefore, the direction of the resultant vector is 69.63°.

Ver imagen AronN84825