Respuesta :

We need to find the range, sample variance, and sample standard deviation cost.

The range is already given: $247. It can be found by subtracting the least from the greatest value:

[tex]466-219=247[/tex]

Now, in order to find the sample variance and the sample standard deviation, we first need to find the mean of the sample:

[tex]\text{ mean }=\text{ }\frac{415+466+400+219}{4}=\frac{1500}{4}=375[/tex]

Now, we can find the sample variance s² using the formula:

[tex]s²=\frac{\sum_{i\mathop{=}1}^n(x_i-\text{ mean})²}{n-1}[/tex]

where n is the number of values (n = 4) and the xi are the values of the sample.

We obtain:

[tex]\begin{gathered} s²=\frac{(415-375)²+(466-375)²+(400-375)²+(219-375)²}{4-1} \\ \\ s²=\frac{40²+91²+25²+(-156)²}{3} \\ \\ s²=\frac{1600+8281+625+24336}{3} \\ \\ s²=\frac{34842}{3} \\ \\ s²=11614 \end{gathered}[/tex]

Now, the sample standard deviation s is the square root of the sample variance:

[tex]\begin{gathered} s=\sqrt{11614} \\ \\ s\cong107.8 \\ \\ s\cong108 \end{gathered}[/tex]

Therefore, rounding to the nearest whole numbers, the answers are:

Answer

range: $247

s² = 11614 dollars²

s ≅ $108