From the problem, two angles in a quadrilateral are 110 and 120 degrees.
Note that the sum of interior angles in a quadrilateral is 360 degrees.
Then the sum of the other two angles will be :
[tex]360-(110+120)=130[/tex]And the angles are in a ratio of 6 : 7.
Multiply the ratio by a common factor "x"
[tex]6x\colon7x[/tex]Then take the sum and equate it to 130 degrees.
[tex]6x+7x=130[/tex]Solve for x :
[tex]\begin{gathered} 13x=130 \\ x=\frac{130}{13} \\ x=10 \end{gathered}[/tex]Now, substitute x = 10 to the ratio.
[tex]\begin{gathered} 6(10)\colon7(10) \\ 60\colon70 \end{gathered}[/tex]Therefore, the other two angles are 60 and 70 degrees.
ANSWER :
60 and 70 degrees